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We consider transport through finite quantum systems such as quantum barriers, wells, dots, and junctions,
coupled to local vibrational modes in the quantal regime. As a generic model, we study the Holstein-Hubbard
Hamiltonian with site-dependent potentials and interactions. Depending on the barrier height to electron-
phonon coupling strength ratio and the phonon frequency, we find distinctly opposed behaviors: vibration-
mediated tunneling or intrinsic localization of �bi�polarons. These regimes are strongly manifested in the
density correlations, mobility, and optical response calculated by exact numerical techniques.
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I. INTRODUCTION

Recent progress in nanotechnology has triggered a sys-
tematic study of electronic transport in microscopic systems
weakly coupled to external electrodes.1 In such devices, the
active element can be a single organic molecule, but also a
suspended carbon nanotube, and may be thought of as a
quantum dot contacted to metallic leads that act as macro-
scopic charge reservoirs. In small quantum dots, energy level
quantization becomes as important as electron correlations.
Additionally, vibrational modes play a central role in the
electron transfer through quantum dots or molecular junc-
tions �see, e.g., the topical review of Ref. 2�.

The electron-phonon �EP� interaction is found to particu-
larly affect the dot-lead coupling. Here electronic and vibra-
tional energies can become of the same order of magnitude,
e.g., when Coulomb charging is reduced by screening due to
the electrodes.3 The same circumstance holds in the polaron
crossover regime, where the electrons are dressed by a pho-
non cloud, implying that phonon features for the current
through the quantum device are of major importance.4 Pho-
non and polaron effects in nanoscale devices have been ex-
tensively discussed, e.g., for �magnetic� molecular
transistors,3,5,6 quantum dots,7 tunneling diodes and
Aharonov-Bohm rings,8 metal/organic/metal structures,9 and
carbon nanotubes.10

In this paper, we study the electronic properties of various
EP coupled quantum systems. We consider one-dimensional
structures, where the “quantum device” is sandwiched be-
tween two metallic wires characterized by �tight-binding�
electron hopping amplitude t, local Coulomb interaction U,
and EP coupling �p �see Fig. 1�. Such systems may be de-
scribed by a generalized Holstein-Hubbard Hamiltonian. The
Holstein-Hubbard model11–14 is not completely realistic, of
course, as it only includes local electron-phonon and
electron-electron interactions as well as a coupling to �dis-
persionless� optical phonons. However, we are interested in
fundamental phenomena arising from the combination of
electron-phonon interaction and “confinement” in discrete
quantum structures. Besides, many aspects of finite �EP
coupled� quantum systems may be understood using such
simplified effective models.5,6,15

II. MODEL

Allowing for site-dependent potentials and electron-
phonon/electron interactions, the tight-binding Holstein-
Hubbard Hamiltonian takes the form

H = �
i,�

�̄ini� − t�
i,�

�ci�
† ci+1� + H.c.� + �0�

i

bi
†bi

− �
i,�

ḡi�0�bi
† + bi�ni� + �

i

Ūini↑ni↓. �1�

Here, �̄i=�+�i, where the potentials, �i on site i, can de-
scribe a tunnel barrier, a disorder, or a voltage basis. Since
we will treat left and right leads in equilibrium, we choose
�=0 throughout the sample, neglecting a bias between the
metal leads, and, in order to avoid spurious multiscattering
from the boundaries in a finite system, we take periodic

boundary conditions. The parameter Ui �Ūi=U+Ui� can be
viewed as an additional Hubbard interaction or charging en-
ergy of, e.g., a quantum dot molecule. The parameter ḡi
= ���p+�p,i� /�0�1/2 describes the local coupling of an elec-
tron on site i to an internal optical vibrational mode at the
same site.16 Here, ��p+�p,i� denotes the corresponding po-
laron binding energy, and �0 is the frequency of the optical
phonon.17 In this way, the model, e.g., mimics tunneling
through �single or double� barriers ��i�0�, trapping of elec-
trons, polarons, or bipolarons at single-impurity or double-
well sites ��i�0�, or transport through quantum dots with
soft dot-lead links.

,t , εU p

p,iε

∆i , Ui

ω0

FIG. 1. �Color online� Schematic representation of model de-
vices described by the Hamiltonian �Eq. �1��.
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On a translational invariant lattice ��̄i=�, ḡi=g, Ūi=U�,
the Holstein-Hubbard model can be numerically solved by
variational diagonalization in the one- and two-particle sec-
tors of interest here. This holds in the thermodynamic limit
for the whole range of parameters and any dimension �for a
recent review of the Holstein �bi�polaron problem, see Ref.
18�. The main result is a continuous crossover with increas-
ing EP coupling strength from electronic quasiparticles
weakly renormalized by phonons to �small� polarons or
bipolarons.19 Depending on the value of the adiabaticity ratio
�=�0 / t in one-dimensional systems, the large-to-small po-
laron crossover is determined by the more restrictive of the
two conditions 	=�p /2t
1 �relevant for ��1, adiabatic re-
gime� and g2
1 �for ��1, antiadiabatic regime�.20

Here, we address the problems of polaron/bipolaron for-
mation and phonon-assisted transport for the more compli-
cated inhomogeneous barrier structures and interactions de-
scribed by the above Hamiltonian.

III. NUMERICAL RESULTS AND DISCUSSION

In our numerical work, we combine exact diagonalization
�ED� and kernel polynomial methods21,22 to determine the
ground-state and spectral properties. All energies will be
measured in units of t.

A. Single-electron case

We first consider a single electron that tunnels through a
single quantum barrier. The barrier height is assumed to
considerably exceed the electron half-bandwidth. Outside the
barrier, the electron is subjected to a rather moderate EP
coupling, �p=0.5. The chosen phonon frequency �0=0.4 re-
flects an adiabatic situation.

Figure 2 shows the behavior of the system’s kinetic

energy

Ekin = − �
i,�

��ci�
† ci+1� + H.c.�� �2�

as the EP coupling strength is increased at the barrier site.
Recall that both coherent and incoherent transport processes
contribute to Ekin. Without loss of generality, we assume the
barrier to be located at site 4. For �p,4=0, the barrier is al-
most impermeable; consequently, the local electron density
ne,i= �ni↑+ni↓� is near zero at site 4. An additional local EP
interaction �p,4 renormalizes the on-site adiabatic potential;
i.e., it leads to a local polaronic level shift that softens the
barrier. Note that the kinetic energy stays almost constant
until �p,4 exceeds a certain critical value, �p,4

c . At �p,4
c , the

mobility of the electron is arrested, and the charge carrier
becomes quasilocalized at the barrier site.23 The large num-
ber of bound vibrational states �nph,4= �b4

†b4��10� gives rise
to a displaced oscillator state at site 4, i.e., a new equilibrium
state of the lattice results, which lowers the energy. The
jumplike transition is in striking contrast to what is observed
if we increase only the EP coupling locally �without having a
barrier� or if we form a quantum well ��4�0� without addi-
tional EP interaction �see inset of Fig. 2�. In these cases we
found a gradual transition from a nearly free electron to a
rather immobile particle.

The extremely sharp polaron transition is accompanied by
a drastic change in the optical response. The regular part of
the optical conductivity is given by

�reg��� = �
n�0

	�n	 ĵ	0�	2

�n

�� − �n� , �3�

where ĵ= iet�i,��ci�
† ci+1�−ci+1�

† ci�� is the current operator
and 	n� represents the eigenstates of H with excitation energy
�n=En−E0.

Figure 3 shows �reg��� and the integrated spectral weight
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FIG. 3. �Color online� Optical response for the single-barrier
system for various �p,4. Dashed lines give the integrated weight
Sreg���.

��
��

�
�

�
�

��
��

��

��
��

��
��

��
��

��
��

��
��

�
�

��
�� ��

��

��
��

��
�� ��

��
��
�� ��

��
��

�
�

��
��

��

��
��

��
��

��
�� ��

�� ��
��

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
ε

p,4

0.0

0.2

0.4

0.6

0.8

1.0

-E
ki

n/2
,

n e,
4

,
n ph

,4
/1

0

-E
kin

/2����

n
e,4��

��
��
��

n
ph,4��

��
��
��

0 1 2 3 4
- ∆

4
, ε

p,4

0

1

-E
ki

n/2 ε
p,4

=0

∆
4
=0

ε
p
=0.5, ω

0
=0.4, ∆

4
=4.0

FIG. 2. �Color online� Kinetic energy of a single electron on a
N=8 site ring with potential barrier �4=4 at site i=4. The main
panel gives Ekin �squares�, the electron density ne,4 �circles�, and the
mean phonon number nph,4 �diamonds� at the barrier site as func-
tions of an additional EP coupling �p,4. The inset shows the varia-
tion of Ekin if the potential �4 is lowered, keeping �p,4=0 �triangles
up� or if �p,4 is raised with �4=0 �triangles down�.

FEHSKE et al. PHYSICAL REVIEW B 77, 085117 �2008�

085117-2



Sreg��� = 

0

�

�reg����d�� �4�

in the vicinity of the transition, where a tiny increase of �p,4
�of about 8�10−3, from top to bottom� substantially changes
the optical spectra. While the upper panel resembles the op-
tical spectra of a large polaron with an absorption maximum
at small frequencies and a rather asymmetric line shape, we
found a bimodal signature near the transition point �middle
panel� and, finally, a typical �almost symmetric� small po-
laron absorption just above �p,4

c �lower panel�. In this man-
ner, the system acts as an optical switch.

A corresponding behavior is found if we increase the bar-
rier �voltage bias�, keeping �p,4 fixed �see Fig. 4�. Again, the
transition is “discontinuous” for small phonon frequencies,
where the concept of an adiabatic energy surface holds to a
good approximation. At larger phonon frequencies, nonadia-
batic effects become increasingly important. Here, the EP
coupling does not work against the �static� barrier directly
and the transition softens as in normal polaronic systems.
Furthermore, for �0�1, the EP coupling constant ḡ4 is re-
duced �i.e., although �p,4 is fixed, we leave the strong-
coupling regime�.

In Fig. 4, we have included the results obtained by a
simple approximative analytical approach to the single-
barrier problem. Assume that

pj = a�R�e	i−j	/R, �5�

where a�R�=tanh 1
2R is the probability for finding the particle

at site j away from the barrier site i. Then, for the infinite
system, the ground-state energy of a polaron with radius R,
where R=� corresponds to the free electron while R=0 de-
scribes a small polaron localized at the impurity site, is given
as

E�R� = Eloc
va + Ekin

va , �6�

with

Eloc
va = �ia�R� − �0ḡi

2a2�R��2 − a�R��

− 2�0g2a2�R��
i
1

N

e−2i/R�2 − e−i/Ra�R�� , �7�

Ekin
va = − 4te−1/2Ra�R��exp�−

1

2
a2�R��ḡi

2 + g2e−2/R�

+ �

i
1

N

e−i/R exp�−
1

2
g2a2�R�e−2i/R�1 + e−2/R�
� .

�8�

Of course, E�R� has to be minimized with respect to R. Al-
though the kinetic energy calculated in this way neglects
important contributions from multiphonon processes,24 we
see that Ekin

va gives a reasonable estimate for the critical value
of �4

c, at least in the adiabatic regime. In the antiadiabatic
region, Ekin

va fails to describe the observed continuous cross-
over. This is a well-known shortcoming of such variational
approaches, which normally yield an abrupt polaron transi-
tion in the whole frequency range.11

B. Two-electron case

Next, we investigate two electrons in a single-barrier
structure. Now, increasing the EP coupling on a barrier site
with strong Coulomb repulsion, we found two successive
transitions �see Fig. 5�. In the first step, one electron becomes
localized at the barrier site blocking because of the large U,
the second one. Raising �p,4 further, both particles will be
trapped, forming an on-site bipolaron. This can be seen most
clearly by monitoring the density correlation
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di =
1

4
�ne,i + 2�ni↑ni↓�� �9�

as a function of the EP coupling. Ekin and nph,4 also clearly
show this two-step transition, being related to significant
changes of the ground-state phonon distribution,19,22 	cm	2
�see insets�. The comparison of data for N=8,10 shows that
there is almost no finite-size dependence of the results.

Finally, let us consider the double-barrier quantum dot
structure sketched in Fig. 1, with two electrons in the system.
We plot in Fig. 6 the kinetic energy and the particle occupa-
tion of the barrier and embedded dot sites as functions of the
depth of the quantum well ��5�0�. The upper panel de-
scribes the regime of the moderate Coulomb interaction at
the dot, with U=0 otherwise. Here, the dot is unoccupied
until its potential is lowered below a critical value. Then, the
particles initially located together at one of the dot-lead sites
are transferred onto the dot. In this process, they change their
nature from a bipolaronic quasiparticle to two electrons
solely �linearly dependent� bound by the potential well �im-
purity�. Thus, the ground state is a multiphonon �few-
phonon� state for �5��5

c ��5��5
c�. If the system has a large

Coulomb interaction everywhere, double occupancy is pro-
hibited �lower panel�. Then, we find initially one polaron per
barrier �lead-dot� site and only one particle tunnels to the dot
at �5

c, thereby stripping its phonons away. Note that the mo-
bility is enhanced in the transition region.

This effect is even more pronounced if we suppose that
the EP coupling acts on the dot-lead link sites only. As can be
seen from Fig. 7, there is a large jumplike increase of the
particle’s kinetic energy if the quantum well reaches �5

c. At
�5

c, the bipolaron, located at one of the dot-lead link sites,
dissolves and the electrons can pass over to the dot. Clearly,
Ekin decreases if we lower the potential of the quantum dot
further, but note that for �5��5

c the kinetic energy is still
larger than for a reference system without EP coupled dot-

lead link sites. In this way, the local coupling to vibrational
degrees of freedom of the barrier opens the gate for particle
transmission; i.e., vibronic excitations play the role of “door-
way states.”

To corroborate the importance of these quantum lattice
fluctuation effects, we determined the optical spectra below,
near, and above the threshold �5

c. The data presented in Fig.
8 give clear evidence for �bi�polaron hopping transport for a
shallow quantum well, with dominant phonon emission and
absorption processes, but resonant vibration-mediated tun-
neling takes place for a deeper well.

We emphasize that the increase of Ekin in passing below
�5

c is accompanied by a decrease of the total integrated
weight Sreg��� of the regular �incoherent� part of �reg���
�compare dashed lines in Fig. 8 from top to bottom�. Thus,
exploiting the f-sum rule,
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− Ekin/2 = D + Sreg��� , �10�

we can conclude that the coherent contribution �Drude part
D� to Ekin is amplified. The insets substantiate this interpre-
tation. Starting from a Poisson-like distribution of 	cm	2, a
second maximum develops at m=0 for �5��5

c, and finally,
for �5��5

c, the ground state contains only zero-, one-, and
two-phonon states with substantial weight.

IV. SUMMARY

To conclude, investigating finite quantum structures
coupled to vibronic degrees of freedom in the framework of
a generalized Holstein-Hubbard Hamiltonian, we have dem-
onstrated that interesting physics, such as intrinsic �bi�po-
laron localization or phonon-assisted transmission, emerges
when the energy scales set by external potentials and Cou-
lomb and electron-phonon interactions become comparable.
In this regime, the interplay between the linear effects result-
ing from the barriers and/or cavities and the nonlinearity in-

herent in a discrete interacting electron-phonon system is of
major importance. A general understanding of vibrational ef-
fects in �molecular� quantum transport, however, is still far
off. Our objects in view will be to study �i� how polaronic
quasiparticles time evolve when passing through phonon-
coupled nanoscale structures and �ii� how finite temperature
�heating� affects the balance between coherent and incoher-
ent transport mechanisms.
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